Posts tagged viral

Scientist Spotlight: Brett Pickett, Ph.D.

The son of a dentist, Brett Pickett grew up in Salt Lake City, Utah focused initially on a career in the family business (his siblings are hygienists and an oral surgeon). Brett believed from an early age that he would follow in his father’s footsteps. He enrolled in Brigham Young University committed to dental school. It was not until Brett’s zoology major was canceled that he became a student of microbiology, where he began researching antibiotic resistance genes in gut microbiota. Dental school was out. Brett received his B.S. in microbiology and continued his studies at the University of Alabama at Birmingham (UAB).

Brett Pickett, Ph.D.

While working in UAB’s bacteria pathogenesis labs, Brett’s path would take another detour as he encountered West Nile, Hepatitis C, and Dengue viruses in his work. He also began to cultivate an interest in computers, technology, and statistics as it related to biological data. These experiences have led to him to his current field of research: viral bioinformatics.

In 2010, Brett moved to the University of Texas Southwestern Medical Center at Dallas to begin his postdoctoral research with Dr. Richard Scheuermann (presently the Director of JCVI La Jolla). Working with Richard, Brett began to shift his focus on how a virus behaves to examining how the human host is responding to being infected. While at UT Southwestern, Brett worked with Richard and his team to identify and develop new statistical, analysis, and visualization tools for the National Institutes of Health (NIH)-funded Viral Pathogen Resource Bioinformatics Database (ViPR). In 2012, Brett moved his family to La Jolla to be a part of JCVI’s informatics team. During this time, his work focused on enhancing the Virus Pathogen Resource and Influenza Research Database bioinformatics resource centers.

Brett stepped away from JCVI for a brief period to work at Thomson Reuters. There he analyzed “-omics” data with pathway analysis and network-building tools, together with drugs and protein target information to better understand viral infection, differences between pathogenic and commensal bacteria, oncology, and other therapeutic areas. This experience allowed him to gain a better understanding of human genetics, disease profiling, and biomarker identification before returning to research at JCVI in 2016.

At JCVI, Brett continues to work on cutting-edge science. He appreciates “the access to collaborators to solve big problems,” and Brett’s efforts are addressing the world’s biggest health challenges. He recently received funding from the US Agency for International Development (USAID) to develop a method for differentiating antibodies against Zika and other closely-related viruses in human patients.

Brett lives in San Diego with his wife and five children. When he is not in the lab, Brett enjoys golf, waterskiing, playing the piano, and visiting the beach with his family. His children, ranging in ages from 1-11, want to be scientists or doctors when they grow up. While there may be no dentists in this generation either, it is clear Brett’s children will have inspirational and accomplished footsteps in which to follow.

International Bioinformatics Workshop

20th International Bioinformatics Workshop on Virus Evolution & Molecular Epidemiology (VEME) on behalf of the International Centre for Genetic Engineering and Biotechnology

The International Bioinformatics Workshop on VEME workshop is recognized as one of the best virus bioinformatics courses in the world and has so far been organized in Belgium, Brazil, Finland, Greece, Portugal, the USA, South Africa, The Netherlands, Serbia and Italy. The 20th edition will be held 9 – 14 August 2015 at the University of the West Indies (UWI) in Trinidad and Tobago. The workshop is co-organized by the UWI, J. Craig Venter Institute (JCVI) and the University of Leuven.

The workshop will provide intensive training in the mathematical principles and computer applications used in the study virus evolution and for conducting detailed molecular epidemiological investigations. The workshop will include lectures and computer practical session where students will have the opportunity to analyze their own research data. Teachers will include 24 world-renowned researchers (including Richard Scheuermann, Tim Stockwell and Karen E. Nelson from JCVI).

Note: the application deadline has been extended to March 29, 2015.

Detailed information and online applications may be accessed at:

http://rega.kuleuven.be/cev/veme-workshop/2015

OR

http://www.icgeb.org/trinidad-and-tobago-veme-bioinformatics-2015.html

JCVI Viral Finishing Pipeline: a Winning Combination of Advanced Sequencing Technologies, Software Development and Automated Data Processing

JCVI viral projects are supported by the NIAID Genomic Sequencing Center for Infectious Disease (GSCID). The viral sequencing and finishing pipeline at JCVI combines next generation sequencing technologies with automated data processing. This allowed us to complete over 1,800 viral genomes in the last 12 months, and almost 8,800 genomes since 2005.

Viral Projects at JCVI

JIRA Viral Sample Tracking Workflow

Our NextGen pipeline, which utilizes SISPA-generated libraries with Roche/454 and Illumina sequencing, enables us to complete a wide variety of viral genomes including challenging samples. Automated assembly pipeline employs CLCbio command-line tools and JCVI cas2consed, a cas to ace assembly format conversion tool. Our complimentary Sanger pipeline software is currently being integrated with the NextGen pipeline. This will improve our data processing and will allow us to use validation software (autoTasker) more efficiently.

Assembly of Repetitive Viral Genomes

Genome Organization of Varicella-Zoster

Assembly of Novel Viral Genomes

CLC Assembly Viewer Representation

Promoter of Bat Genome

Promoter of Bat Genome

During the past year we have found that novel viruses, repetitive genomes, and mixed infection samples could not be easily integrated with our high-throughput assembly pipeline. We have developed an assembly and finishing process that utilizes components of the high-throughput pipeline and combines them with manual reference selection and editing. Using this approach we completed novel adenovirus genomes and mixed-infection avian influenza genomes, and improved assemblies of previously unknown arbovirus genomes. We are currently working on optimizing and automating this new pipeline.

Assembly of Mixed Viral Genomes

Consed Representation of Mixed Viral Sample

Consed Representation of Mixed Viral Sample

Repetitive genomes have long been known to present great challenges during assembly and finishing. We are presenting a new approach to assembly and finishing of repetitive varicella genome that is based on separating it into overlapping PCR amplicons followed by merging sequenced amplicons during assembly.

To streamline our viral pipelines, we have fully integrated them with JCVI’s LIMS and JIRA Workflow Management to create a semi-automated tracking interface that follows the progress of viral samples from acquisition through to NCBI submission. This allows us to process a large volume of samples with limited manual interaction and, at the same time, gives us flexibility to work on challenging and novel genomes.

Acknowledgements

The JCVI Viral Genomics Group is supported by federal funds from the National Institute of Allergy and Infectious Disease, the National Institutes of Health, and the Department of Health and Human Services under contracts no. HHSN272200900007C.

Bat coronavirus project is collaboration with Kathryn Holmes and Sam Dominguez, University of Colorado Medical Center.

The authors would like to thank members of the Viral Genomics and Informatics group at JCVI.

References

Viral genome sequencing by random priming methods. Djikeng A, Halpin R, Kuzmickas R, Depasse J, Feldblyum J, Sengamalay N, Afonso C, Zhang X, Anderson NG, Ghedin E, Spiro DJ. BMC Genomics. 2008 Jan 7;9:5A virus discovery method incorporating DNase treatment and its application to the identification of two bovine parvovirus species.  Allander T, Emerson SU, Engle RE, Purcell RH, Bukh J.

Note

This post is based on a poster by Nadia Fedorova, Danny Katzel, Tim Stockwell, Peter Edworthy, Rebecca Halpin, and David E. Wentworth.