Posts tagged genomics

Professional Development Opportunities this Summer

This summer we are offering two professional development workshops: GenomeSolver and Bioinformatics: Unlocking Life through Computation.  Both explore bioinformatics, microbial diversity and the implementation in the undergradauate or high school classrooms. 

The GenomeSolver workshop trains faculty on genome analysis. Workshop attendees will learn about general methodologies, standards, and processes used to annotate and analyze microbial genomes. The workshop contents will be available to aid the faculty in developing teaching modules. In addition, extensive documentation on methodologies and tools will be available via the online environment created for this project. On online web portal Genome Solver (www.genomesolver.org) will be a virtual space for development and sustaining of community. Genome Solver will assist faculty with technical issues and curricular design, as well as an online environment for the ongoing sharing of information including publication of student work. 

http://www.jcvi.org/cms/education/prodev/genome-solver-annotation-workshops

Bioinformatics: Unlocking Life through Computation is a new opportunity for high school teachers. Genomics and biotechnology are valuable tools in our quest to understand life and nature. However, introducing the science classroom to the computational and mathematical underpinnings of biology can be challenging. The goal of this workshop is to introduce a curriculum for mathematics and science education in the area of genomics (with a focus on the fascinating world of microbes). Educators will be introduced to the various analysis and computational challenges that arise in this discipline. Workflow examples illustrating comparative genomic analysis will be made available through the JCVI Metagenomics Report (METAREP) software infrastructure. The eventual aim is for the educational material to be integrated with local high school curricula requirements to expose students to both hypothesis-driven and discovery-based science.

 http://www.jcvi.org/cms/education/prodev/bioinformatics-unlocking-life-through-computation/

Carl Woese 1928-2012

Editor’s Note: This post originally appeared on T. Taxus, December 31, 2012, by Jonathan Badger. Dr. Badger  is an Assistant Professor in the Microbial and Environmental Genomics Group at the J. Craig Venter Institute in La Jolla, CA. Reprinted by permission.

As you may have heard, Carl Woese died of pancreatic cancer yesterday at the age of 84. I had the honor of working with Carl in grad school at the University of Illinois where my advisor, Gary Olsen, ran a joint lab with Carl.

Carl Woese

Carl Woese. Photo courtesy IGB.

As the originator of the use of ribosomal RNA to distinguish and classify organisms (including obviously the Archaea), Carl both revolutionized evolutionary biology and created a method that is still very much in use today. Even in the latest metagenomic study of the oceans or of the human gut, a 16S rRNA diversity study is required as a control in addition to whatever additional markers or random sequencing is used.

One of the things that fascinated me about Carl is how he constantly reinvented himself and explored new fields of biology — his early work in the 1960s dealt with classical molecular biology and the genetic code (the origins of which continued to fascinate him for the rest of his life). He then transfered to the study of the ribosome and its structure, which in turn led to his study of 16S and its evolutionary implications. In the 1990s, when I worked with him, he was a pioneeering microbial genomicist and collaborated with TIGR to sequence the first two Archaeal genomes. And in his final years he focused on early evolution and the last common ancestor of life in the light of what genomics has taught us.

Carl also had his humorous and counter-cultural side. I remember him telling me how his lab in the 1960s heard about the rumor that compounds in banana peels were a legal narcotic and how they launched an unofficial research project to isolate these. His verdict was that there was nothing there and neither the peels nor anything in them could get you high — but he wanted to empirically test that. Also, when reading about a supposed “Qi master” who claimed to be able to influence mutation rates with his mind, he invited him to the lab to give a demonstation — which naturally failed to show any effect under controlled conditions — but he wanted to see if the guy could really do it.

Genomics, metagenomics, and evolutionary biology has lost one of its greats — but his legacy lives on.

JCVI Viral Finishing Pipeline: a Winning Combination of Advanced Sequencing Technologies, Software Development and Automated Data Processing

JCVI viral projects are supported by the NIAID Genomic Sequencing Center for Infectious Disease (GSCID). The viral sequencing and finishing pipeline at JCVI combines next generation sequencing technologies with automated data processing. This allowed us to complete over 1,800 viral genomes in the last 12 months, and almost 8,800 genomes since 2005.

Viral Projects at JCVI

JIRA Viral Sample Tracking Workflow

Our NextGen pipeline, which utilizes SISPA-generated libraries with Roche/454 and Illumina sequencing, enables us to complete a wide variety of viral genomes including challenging samples. Automated assembly pipeline employs CLCbio command-line tools and JCVI cas2consed, a cas to ace assembly format conversion tool. Our complimentary Sanger pipeline software is currently being integrated with the NextGen pipeline. This will improve our data processing and will allow us to use validation software (autoTasker) more efficiently.

Assembly of Repetitive Viral Genomes

Genome Organization of Varicella-Zoster

Assembly of Novel Viral Genomes

CLC Assembly Viewer Representation

Promoter of Bat Genome

Promoter of Bat Genome

During the past year we have found that novel viruses, repetitive genomes, and mixed infection samples could not be easily integrated with our high-throughput assembly pipeline. We have developed an assembly and finishing process that utilizes components of the high-throughput pipeline and combines them with manual reference selection and editing. Using this approach we completed novel adenovirus genomes and mixed-infection avian influenza genomes, and improved assemblies of previously unknown arbovirus genomes. We are currently working on optimizing and automating this new pipeline.

Assembly of Mixed Viral Genomes

Consed Representation of Mixed Viral Sample

Consed Representation of Mixed Viral Sample

Repetitive genomes have long been known to present great challenges during assembly and finishing. We are presenting a new approach to assembly and finishing of repetitive varicella genome that is based on separating it into overlapping PCR amplicons followed by merging sequenced amplicons during assembly.

To streamline our viral pipelines, we have fully integrated them with JCVI’s LIMS and JIRA Workflow Management to create a semi-automated tracking interface that follows the progress of viral samples from acquisition through to NCBI submission. This allows us to process a large volume of samples with limited manual interaction and, at the same time, gives us flexibility to work on challenging and novel genomes.

Acknowledgements

The JCVI Viral Genomics Group is supported by federal funds from the National Institute of Allergy and Infectious Disease, the National Institutes of Health, and the Department of Health and Human Services under contracts no. HHSN272200900007C.

Bat coronavirus project is collaboration with Kathryn Holmes and Sam Dominguez, University of Colorado Medical Center.

The authors would like to thank members of the Viral Genomics and Informatics group at JCVI.

References

Viral genome sequencing by random priming methods. Djikeng A, Halpin R, Kuzmickas R, Depasse J, Feldblyum J, Sengamalay N, Afonso C, Zhang X, Anderson NG, Ghedin E, Spiro DJ. BMC Genomics. 2008 Jan 7;9:5A virus discovery method incorporating DNase treatment and its application to the identification of two bovine parvovirus species.  Allander T, Emerson SU, Engle RE, Purcell RH, Bukh J.

Note

This post is based on a poster by Nadia Fedorova, Danny Katzel, Tim Stockwell, Peter Edworthy, Rebecca Halpin, and David E. Wentworth.

Entamoeba histolytica research presented at the Molecular Parasitology Meeting

Entamoeba histolytica causes invasive intestinal and extraintestinal infections, known as amoebiasis, in about 50 million people and still remains a significant cause of human death in developing countries. However, for unknown reasons, fewer than 10% of E. histolytica infections are symptomatic (causing symptoms such as diarrhea, dysentery or liver abscess). The J. Craig Venter Institute is among the institutions awarded the NIAID Genome Sequencing Centers for Infectious Diseases (GSCID) contracts to provide high-quality genome sequencing and high-throughput genotyping of NIAID Category A-C priority pathogens.

Photo of Entamoeba histolytica

Entamoeba histolytica in the trophozoite stage.

A GSCID project led at JCVI by Dr. Elisabet Caler includes performing whole-genome sequencing of Entamoeba phenotypic variants from symptomatic, asymptomatic and liver abscess-causing strains chosen to include a range of clinical manifestations and taken from human cases, as well as strains grown under different conditions. Our objective is to develop a genome-wide landscape of Entamoeba diversity to understand how sequence variations in the parasite relate to pathogenicity (ability to cause disease) and clinical outcome.

The Molecular Parasitology Meeting held at the Woods Hole Oceanographic Institution, Woods Hole, MA last week provided a window into the exciting science of Parasitology.  The keynote speaker, Fotis Kafatos, spoke on “Major Challenges to Global Health in the Tropics and Beyond–Insect Vectors of Malaria and Other Parasitic or Viral Diseases.”  Dr. Kafatos stressed that a multi-pronged approach to the control of malaria is necessary to prevent the devastating loss of life that malaria causes.

Woods Hole Oceanographic Institution

A view of Woods Hole Oceanographic Institution.

The many excellent papers and posters provided an overview of the field, including   Plasmodium falciparum, Toxoplasma gondii, the trypanosomes, Giardia lamblia, Trichomonas vaginalis, Entamoeba histolytica, Schistosoma species, Babesia bovis, and associated vectors.  Topics spanned basic biology, drug design, sequencing and host-pathogen interactions.

I presented an overview of the Entamoeba sequencing project at the meeting.   Discussions as a result of the presentation included questions about the details of sequencing and handling the next-generation sequencing data.   We had animated discussions about methods for assembly of the DNA sequences, including reference-guided vs de novo assembly.   Many attendees were impressed with JCVI’s open-source METAREP metagenomic tool (J. Goll, et al., Bioinformatics 2010).  Determination of the best methods for the analysis of differences in the clinical isolates generated much discussion.  Entamoeba researchers see the sequences as a great resource and are looking forward to being able to mine the data.  One, from India, was very excited that he was going to have about 15 times the resources he has had in the past, since he has had only had one genome to mine up until now.

The Molecular Parasitology Meeting was an excellent venue for scientific exchange.  The Entamoeba histolytica GSCID project will help us understand the pathogenicity of Entamoeba histolytica, and has the potential to save lives in developing countries.